W·R·哈密顿
天才一秒记住【多米小说】地址:duomi166.com
W·R·哈密顿
19世纪爱尔兰著名数学家W·R·哈密顿提出了一个世界著名的问题:周游世界问题。
1859年,哈密顿拿到一个正十二面体的模型。我们知道,正十二面体有12个面、20个顶点、30条棱,每个面都是相同的正五边形。
他发明了一个数学游戏:假如把这20个顶点当作20个大城市,比如巴黎、纽约、伦敦、北京……,把这30条棱当作连接这些大城市的道路。
如果有一个人,他从某个大城市出发,每个大城市都走过,而且只走一次,最后返回原来出发的城市。问这种走法是否可以实现?
这就是著名的“周游世界问题”。
我们如果知道七座桥的传说,就会意识到这是一道拓扑学研究范围内的问题。
解决这个问题,方法很重要。它需要一种很特殊的几何思路。这种题是不能拿正十二面体的点线去试的。
设想,这个正十二面体如果是橡皮膜做成的,那么我们就可以把这个正十二面体压成一个平面图。假设哈密顿所提的方法可以实现的话,那么这20个顶点一定是一个封闭的20角形世界。
依照这种思路,我们就进入了最初步的拓扑学领域。最后的答案是,哈密顿的想法可以实现。
哈密顿是一位首先提出“四元数”的人。这个成果至今还镌刻在他天才火花闪现的地方。
复数可以用来表示平面的向量,在物理上有极其广泛的应用。人们很自然地联想到:能否仿照复数集找到“三维复数”来进行空间量的表示呢?
1828年开始,哈密顿开始悉心研究四元数。四元数属于线性代数的组成部分,是一种超复数。但在哈密顿以前,没有人提出四元数,哈密顿也是要解决空间量表示而研究的。
研究了十多年,哈密顿没有丝毫进展,他是一个数学神童,少有难题,这次可真遇上麻烦了。到1843年,哈密顿研究了整整15年。
有一天下午,夕阳无限,秋色爽丽,风景宜人。哈密顿的妻子见丈夫埋头研究问题,几乎不知寒暑不问春秋,于是很想让他外出放松一下,调节一下身体。
更多内容加载中...请稍候...
本站只支持手机浏览器访问,若您看到此段落,代表章节内容加载失败,请关闭浏览器的阅读模式、畅读模式、小说模式,以及关闭广告屏蔽功能,或复制网址到其他浏览器阅读!
《创世鼻祖的发明家(4)》转载请注明来源:多米小说duomi166.com,若浏览器显示没有新章节了,请尝试点击右上角↗️或右下角↘️的菜单,退出阅读模式即可,谢谢!